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In this paper, we employ the so-called linearity preserving method, which requires that a
difference scheme should be exact on linear solutions, to derive a nine-point difference
scheme for the numerical solution of diffusion equation on the structured quadrilateral
meshes. This scheme uses firstly both cell-centered unknowns and vertex unknowns,
and then the vertex unknowns are treated as a linear combination of the surrounding
cell-centered unknowns, which reduces the scheme to a cell-centered one. The weights
in the linear combination are derived through the linearity preserving approach and can
be obtained by solving a local linear system whose solvability is rigorously discussed.
Moreover, the relations between our linearity preserving scheme and some existing
schemes are also discussed, by which a generalized multipoint flux approximation scheme
based on the linearity preserving criterion is suggested. Numerical experiments show that
the linearity preserving schemes in this paper have nearly second order accuracy on many
highly skewed and highly distorted structured quadrilateral meshes.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In many computational problems, such as the computational radiation hydrodynamics and the reservoir simulation, the
discretization of the following diffusion term
r � ðjðx; yÞruÞ ð1:1Þ
is of great interests. In the radiation hydrodynamics, u can be a certain material temperature and jðx; yÞ is the diffusion coef-
ficient, while in reservoir simulation, u and jðx; yÞ denote the pressure and permeability, respectively.

In discretizing (1.1), one usually has to face two difficulties, i.e., (i) jðx; yÞ is discontinuous and strongly nonlinear, (ii) the
mesh is highly distorted and highly skewed which usually occurs in the Lagrangian or ALE hydrodynamic computations
[8,10]. There has been extensive study on developing efficient numerical schemes for (1.1), the issues about which range
from the classical stability and accuracy to some other desirable numerical properties, including symmetry and positive def-
initeness of the resulting linear system, local stencil, local conservation, positivity preserving or monotonicity, simplicity,
robustness, cost-efficiency, etc. To our knowledge, there exists no scheme satisfying all the above properties. Usually, a
scheme possesses some properties at the cost of losing other ones. Among the aforementioned desirable properties, from
our point of view, the accuracy and stability are the fundamental ones.

In this paper, we are more interested in the so-called linearity preserving property, which says that a difference scheme is
exact on linear solutions. We observe that some authors mentioned this property in their works [6,7,22,23,27], for example,
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the authors in [22] suggested a so-called MDHW scheme, which preserves the homogeneous linear solutions aþ bxþ cy and
aþ br þ cz in x� y and r � z geometries, respectively. To our knowledge, the authors usually claimed that certain scheme has
or has not the linearity preserving property, but there has been no intensive investigation or study on this topic. Although the
linearity preserving property has not been proved theoretically to be a sufficient or necessary condition for certain good
numerical properties mentioned above, we observe from our numerical practice and other peoples’ works that a difference
scheme with linearity preserving property usually has good accuracy on highly distorted meshes. Motivated by this obser-
vation, we suggest here the so-called linearity preserving criterion, which requires that each step of the derivation of a differ-
ence scheme for diffusion equation is exact or linearly exact, i.e., exact in the sense whenever the solution is a linear function
and the diffusion coefficient jðx; yÞ is a constant. Obviously, a difference scheme derived from the linearity preserving cri-
terion is exact for the linear solution.

The linearity preserving criterion is applied here to improve the accuracy of a special difference scheme suggested orig-
inally in [20] through a control volume approach. In this scheme, the normal component of the flux (see (2.5)) on each cell
edge is explicitly expressed by the two cell-centered unknowns with respect to the cells sharing that edge, and the two ver-
tex unknowns defined at the two endpoints of the edge. Usually the vertex unknowns are treated as intermediate ones and
are expressed by a linear combination of the surrounding cell-centered unknowns. On structured quadrilateral meshes, the
above scheme involves nine cell-centered unknowns and as a result, is often called as the nine-point scheme (NPS) [14,28].
We note that Klausen and Winther [19] once gave a definition of the multipoint flux approximation (MPFA), which states
that the MPFA discretization is a control volume method where more than two pressure values (here the values of u) are
used to give an explicit discrete flux expression. According to this recent definition of MPFA, NPS can also be viewed as,
to some sense, a kind of MPFA scheme.

The most important features of NPS are that it has a very simple explicit expression of the flux, involves less amount of
computational cost and is easy for coding, so that NPS has been used for a long time in some hydrodynamics codes, such as
LARED-I and MARED [11,26]. The main disadvantage of NPS is that it loses accuracy on highly distorted meshes, which is
caused mainly by the rough or improper treatments on the vertex unknowns. How to improve the accuracy of NPS is a very
interesting problem and has drawn some authors’ attentions [5,7,28,30,33]. These improvements are either complicated and
costly or not accurate enough. It is evident that a desirable improvement on NPS should keep its main advantages so that it is
simple for coding and involves less amount of computational cost and moreover, does not result in a major change of the
original codes.

We use the linearity preserving criterion to rederive the NPS and further, to obtain a simple treatment for the vertex un-
knowns. The computational cost of this new vertex unknown treatment is approximately one third of that in [28] and in-
creases the accuracy to almost second order on many typical highly distorted and highly skewed meshes. As done in [28],
our improvement treats the discontinuity rigorously and furthermore, is obtained not at the cost of massive change of
the original codes. Since we design our algorithm by using the continuity of the flux, the scheme derived here also keeps
the local conservation. For a treatment of vertex unknown, both the method in [28] and our present algorithm here depend
upon the solution of a local 4� 4 linear system, whose unknowns in the former are the weights in the linear combination
mentioned above while in the present paper are some newly introduced ones. Compared with [28], the present local linear
system has a simple structure and a simple explicit expression for its entries, which reduces largely the computational cost
and makes it possible to analyze solvability.

In using the linearity preserving method to find a treatment for the vertex unknowns, we employ an MPFA-type tech-
nique to introduce some intermediate cell edge unknowns. The only difference is that our cell edge unknown is defined
at a dynamic point on the whole edge, instead of a fixed point (known as continuity point) in certain half edge, such as
the midpoint of a cell edge used in the usual MPFA type schemes. The idea to choose a dynamic point on the whole cell edge
enables us not only to obtain a robust algorithm for the vertex unknowns but also to construct a generalized MPFA scheme.

In the construction of many discretization schemes for the diffusion equation, such as the local support operator scheme
(LSOM) [23], the local flux mimetic finite difference scheme (LFMFD) [21], the physical space derived MPFA [1,19] together
with its variations [9], the reference space derived MPFA [3,29], and the nine-point scheme in [28], one has to solve certain
local linear systems. The local systems in some schemes, such as LSOM and the symmetric version of LFMFD, are symmetric
and positive definite for meshes consisting of convex cells and as a consequence, the solvability of the local systems follows
immediately. However, the solvability of the local linear systems in other schemes is seldom discussed and the correspond-
ing algorithms run the risk of being breakdown in the computational course. This problem is neglected mainly because the
breakdown rarely occurs in practical computation, however, theoretically speaking, it does exist. To our practice, the possi-
bility for the breakdown increases when the cells in the mesh approach concave ones. We note that the authors in [19] ob-
tained the solvability of the local linear system in a special MPFA scheme under the condition that the symmetric part of
certain 2� 2 matrix is positive definite. Usually, this condition is not satisfied by many highly distorted meshes. By intro-
ducing the dynamic continuity point, we are able to discuss rigorously the solvability of our local linear system. Then, the
difficulty that arises from the possible singularity of our local linear system is overcome, which makes our algorithm a robust
one. More interesting is that the discussion for our local linear system also contributes to the MPFA algorithm, since we no-
tice that there exists certain relation between our linearity preserving nine-point scheme and the physical space derived
MPFA.

The rest of this paper is organized as follows. In Section 2, we derive the NPS scheme by the linearity preserving method.
In Section 3, we discuss in details the treatments for the vertex unknowns and in Section 4, we give the relations between our
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linearity preserving nine-point scheme and some existing schemes, by which a generalized MPFA scheme is suggested. In
Section 5, we study rigorously the solvability of the local linear system and locate some of the singular points. The numerical
results are presented in Section 6 to show the efficiency of our linearity preserving schemes and some conclusions are given
in the last section.

2. The nine-point scheme

For simplicity of exposition, we consider a diffusion equation of the form
�r � ðjðx; yÞruÞ ¼ f ðx; yÞ; in X ð2:1Þ
with Dirichlet boundary condition
u ¼ u0; on @X ð2:2Þ
or Neumann boundary condition
�ðjðx; yÞruÞ � n ¼ un; on @X; ð2:3Þ
where jðx; yÞ; f ;u0;un are given functions, X is a bounded polygonal domain in R2 with its boundary denoted by @X, and n
denotes the outward unit vector normal to the boundary @X.

In this section, we shall derive a nine-point scheme for diffusion equation on the distorted structured quadrilateral mesh,
which initially has both cell-centered unknowns and vertex unknowns. By certain proper treatment of the vertex unknowns,
this scheme reduces to a cell-centered scheme and moreover, has the capability of solving problems either with or without
discontinuous diffusion coefficients. The derivation of the nine-point scheme and the treatment of the vertex unknowns are
subjected to the so-called linearity preserving criterion, which requires that each step of the derivation of a discretization
scheme for (2.1) is exact or linearly exact, i.e., exact in the sense whenever the equation possesses a linear solution and
the diffusion coefficient jðx; yÞ is a constant. Throughout, we shall endow the symbol ’ with a special meaning and assume
that

� = is used if the derivation is exact.
� ’ is used whenever the relevant approximation satisfies the linearity preserving criterion.
� �, by contrast, will be used when an approximation is not subjected to the linearity preserving criterion.

For example,
Z b

a
cðxÞdx ’ c

aþ b
2

� �
ðb� aÞ;

Z b

a
cðxÞdx ’ cðaÞ þ cðbÞ

2
ðb� aÞ;

Z b

a
cðxÞdx � cðaÞðb� aÞ:
Suppose that X is partitioned into a number of nonoverlapping regular polygonal cells, i.e, the intersection of any two
intersected cells is either a common edge or a common vertex. Let A1A2 � � �Ak be an arbitrary cell with cell center denoted
by OA. The coordinates of OA are given by
xA ¼
1
k

Xk

i¼1

xAi
; yA ¼

1
k

Xk

i¼1

yAi
; ð2:4Þ
where ðxAi
; yAi
Þ denote the coordinations of Ai. For each cell, we define an independent cell-centered unknown uA at the cell

center. We also define vertex unknowns, denoted by uAi
and defined at vertex Ai. It will be clear later that these vertex un-

knowns are intermediate ones and can be represented locally by the cell-centered unknowns. Denote by nA the outward unit
vector normal to the cell boundary @A1A2 � � �Ak and SA the area of the cell A1A2 � � �Ak. For simplicity, we assume that edge A3A4

is on the domain boundary. Assume also that B1B2 � � �Bm is another cell next to A1A2 � � �Ak with cell center denoted by OB. The
common edge of these two cells is A1A2ðB2B1Þ, see Fig. 1.
4A
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1 2A B
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Fig. 1. Definition of mesh and unknowns.
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Let the flux vector F be defined by
F ¼ �jðx; yÞru: ð2:5Þ
Obviously, F will be a constant vector if the solution is a linear function and the diffusion coefficient is a constant. The normal
component of the flux on edge A1A2 can be expressed as
F � n12 ¼ �jðx; yÞru � n12; ð2:6Þ
where n12 is the restriction of nA on edge A1A2. On the triangle DOAA1A2, we have [15,34]
n12 ¼
1

hð1ÞA

a21 OAA1

!
þa12 OAA2

!� �
; aij ¼

1

jA1A2j2
OAAi

!
�AjAi

!
; ð2:7Þ
and hð1ÞA denotes the distance from OA to edge A1A2. It follows from (2.6) and (2.7) that
F � n12 ¼ �
jðx; yÞ

hð1ÞA

a21ru � OAA1

!
þa12ru � OAA2

!� �
’ �jðOAÞ

hð1ÞA

½a21ðuA1 � uAÞ þ a12ðuA2 � uAÞ�

¼ �jðOAÞ
hð1ÞA

ða21uA1 þ a12uA2 � uAÞ; ð2:8Þ
where we have used a21 þ a12 ¼ 1 and here and hereafter, jðOAÞ denotes jðxOA ; yOA
Þ for simplicity. As a result,
� hð1ÞA

jðOAÞ

Z
A1A2

F � nA ds ’ jA1A2jða21uA1 þ a12uA2 � uAÞ: ð2:9Þ
Analogously, on triangular domain DOBA2A1, we have
� hð1ÞB

jðOBÞ

Z
A1A2

F � nB ds ’ jA1A2jðb21uA1 þ b12uA2 � uBÞ; ð2:10Þ
where
bij ¼
1

jA1A2j2
OBAi

!
�AjAi

!
:

Since the flux is continuous across the cell edge A1A2, it holds that
Z
A1A2

F � nA ds ¼ �
Z

A1A2

F � nB ds: ð2:11Þ
Substituting (2.11) into (2.10) leads to
� hð1ÞB

jðOBÞ

Z
A1A2

F � nA ds ’ �jA1A2jðb21uA1 þ b12uA2 � uBÞ: ð2:12Þ
Now, by summing (2.9) and (2.12), we obtain
Z
A1A2

F � nA ds ’ �Kð1ÞA jA1A2j½uB � uA � Dð1ÞA ðuA2 � uA1 Þ� :¼ Fð1ÞA ; ð2:13Þ
where
Kð1ÞA ¼
jðOAÞjðOBÞ

jðOAÞhð1ÞB þ jðOBÞhð1ÞA

; Dð1ÞA ¼
1

jA1A2j2
A1A2

!
�OAOB

!
: ð2:14Þ
The expressions of the normal component of the flux on other edges in the domain can be derived in a similar way. As for the
boundary edge A3A4, if Dirichlet boundary condition is imposed, we get, by following the derivation of (2.9),
Z
A3A4

F � nA ds ’ �jðOAÞjA3A4j
hð3ÞA

A3A4

!
�OAA4

!
uA3 þ A4A3

!
�OAA3

!
uA4

jA3A4j2
� uA

8<
:

9=
; :¼ Fð3ÞA : ð2:15Þ
Finally, integrating both sides of (2.1) over cell A1A2 � � �Ak and using the divergence theorem yield
Xk

i¼1

Z
AiAiþ1

F � nA ds ¼
Z

A1A2 ���Ak

f ðx; yÞdxdy; ð2:16Þ
where Akþ1 ¼ A1. By using the standard point spatial discretization for the source term, we obtain the discrete counterpart of
(2.1),
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SA

Xk

i¼1

FðiÞA ¼ f ðxA; yAÞ; ð2:17Þ
where FðiÞA , the integration of the normal components of the flux over certain domain edge (resp. boundary edge), is given in
the exact way of (2.13) and (2.14) (resp. (2.15)).

Here we observe that the same (2.17) with FðiÞA given by (2.13) and (2.14) can be obtained in a number of ways, see, e.g.,
[20,28,30]. The characteristic feature about the present derivation is that it is conducted according to the linearity preserving
criterion. Moreover, at the present stage, the above derivation is valid for either structured or unstructured meshes with
arbitrary polygonal cells.

We point out that our discretization scheme for (2.1) is developed with coupled hydrodynamics applications in mind,
where the structured quadrilateral mesh is often employed. On this type of mesh, a typical stencil of (2.17) with respect
to a cell in the domain involves five cell-centered unknowns as well as four vertex unknowns. Since we have both cell-cen-
tered unknowns and vertex unknowns while possess only one discrete equation for each cell, the unknowns are more than
the discrete equations. A possible way to solve this problem is to find a discrete equation for each vertex unknown. This can
be done very efficiently by some special techniques, such as introducing another mesh with respect to the vertices, see [33].
However, methods of this kind often double the computational cost. Another way to solve the problem is to eliminate the
vertex unknowns. More explicitly, in our practice, we treat the vertex unknowns as certain linear combination of the sur-
rounding cell-centered unknowns. In this case, the stencil of the nine-point scheme involves nine cell-centered unknowns.

3. The treatments for the vertex unknowns

From now on, we shall confine ourselves to the case where the structured quadrilateral mesh is involved. In this section,
we shall mainly discuss the problem of eliminating the vertex unknowns. Besides, we just consider the vertices in the do-
main where four edges meets at a common vertex. The case where the vertex is on the boundary can be discussed analo-
gously. Usually, the vertex unknown u0 is treated as a linear combination of the surrounding cell-centered unknowns,
namely,
u0 ¼
X4

i¼1

wiui; ð3:1Þ
where uið1 6 i 6 4Þ are the values of u at the centers of the four surrounding cells, wið1 6 i 6 4Þ are the so-called weights. If
the above formula is exact for the constant solution, one immediately gets
X4

i¼1

wi ¼ 1: ð3:2Þ
3.1. The former treatments for the vertex unknowns

The simplest way to approximate the vertex unknown u0 is to use the equal weights. In this approach, the weights in (3.1)
are given by
wi ¼
1
4
; i ¼ 1;2;3;4: ð3:3Þ
Generally speaking, the above approximation does not meet the linearity preserving criterion and as a result, the symbol = in
(3.1) must be replaced by � when weights in (3.3) are used. Another type of weights is given by the formula below
wi ¼
jðOiÞ=diP4
j¼1jðOjÞ=dj

; i ¼ 1;2;3;4; ð3:4Þ
where diði ¼ 1;2;3;4Þ denote the distance between the cell centers Oj and the vertex. This choice of weights does not satisfy
the linearity preserving criterion either. Although the above two approximations lead to poor accuracy on highly distorted
meshes, they are often used in practical computation since they are very simple and lead to fairly good accuracy on smooth
meshes, see, e.g., [14].

When the diffusion coefficient is continuous, we once suggested in [15,31] an approximation that satisfies the linearity
preserving criterion. The key point is to use bilinear interpolation,
u0 ’ ð1� nÞð1� gÞu1 þ nð1� gÞu2 þ ngu3 þ gð1� nÞu4; ð3:5Þ
where n and g are determined by the following bilinear mapping
ð1� nÞð1� gÞx1 þ nð1� gÞx2 þ ngx3 þ gð1� nÞx4 ¼ x0;

ð1� nÞð1� gÞy1 þ nð1� gÞy2 þ ngy3 þ gð1� nÞy4 ¼ y0;

�
ð3:6Þ
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here ðxi; yiÞði ¼ 1;2;3;4Þ and ðx0; y0Þ stand for the coordinates of the four cell centers and the vertex being considered, respec-
tively. In the case where the diffusion coefficient is discontinuous, the above approximation must be done with care such
that the four cell unknowns is chosen to be located on the same side of the discontinuity line [15,31]. Thus, this method must
be used under the condition that the discontinuity line is known beforehand, which decreases its efficiency and prevents it
from being used in those cases where certain moving discontinuity such as shock wave occurs. In a recent paper [5], the
authors applied this bilinear interpolation approach to the discontinuity case by incorporating the effect of the diffusion
coefficient. However, the resulting nine-point scheme has only first order accuracy on distorted meshes.

Recently, a new approximation was suggested in [28], where the weights are obtained by making use of the continuity of
the flux and the tangential derivatives across or along the four cell edges. Although this method is designed for both the con-
tinuous and discontinuous cases, it is a little complicate and involves a large amount of extra computation. We claim that
this method satisfies the linearity preserving criterion. Here we omit the corresponding argument to keep our main point
of this paper clear. The interested readers are referred to [28] for details.

There exist some other ways to treat the vertex unknowns, such as by Taylor expansion and minimization of the trunca-
tion error [16,30], or by certain adaptive choice of the stencil [7,32]. All these methods are either complicated or being less
accurate on distorted meshes. In the rest part of this section, we shall suggest a new approach which results in relatively a
small amount of extra computational cost without loss of accuracy.
3.2. A general framework of finding the new weights

To begin with, we introduce some new notations. Suppose that a vertex Q0 is surrounded by the cells Xk with k ¼ 1;2;3;4.
The cell Xk, with cell edges Q 0Pk and Q 0Pkþ1, has its cell center at Ok. Tk is a dynamic point on edge Q 0Pk (see Fig. 2(a)), de-
fined by
Tk ¼ sðQ 0; kÞQ0 þ ½1� sðQ 0; kÞ�Pk; k ¼ 1;2;3;4; ð3:7Þ
where sðQ 0; kÞð0 < sðQ0; kÞ < 1Þ is a dynamic parameter, dependent of Q 0 and the four edges sharing Q 0. In the following
discussion, we shall only consider the case where sðQ0; kÞ ¼ sðQ 0Þ, i.e., the dynamic parameter assumes the same value
on the four edges having Q 0 in common. Besides, we shall drop ðQ 0Þ and simply use s for simplicity. Here, we employ a peri-
odic numbering such that P5 ¼ P1; P4 ¼ P0; T4 ¼ T0, etc. Denote by uk the cell-centered unknown at Ok and by u0 the vertex
unknown at Q0. Let nk be the outward unit vector normal to the boundary of cell Xk. Denote by f 1

k and f 2
k the restriction of

F � nk on cell edge Q0Pk and Q0Pkþ1, respectively. Finally, we introduce some more unknowns �uk, defined at Tk with
k ¼ 1;2;3;4, see Fig. 2(b).

With these notations, we are ready to describe our method. We see that at the cell corner of Xk with respect to the vertex
Q 0, there exist five unknowns, including the cell-centered unknown uk, the newly introduced cell edge unknowns �uk; �ukþ1

and the flux normal components f 1
k ; f

2
k . Assume that these unknowns are related by the following linear system
jQ 0Pkjf 1
k

jQ 0Pkþ1jf 2
k

 !
¼

aðkÞ11 ðsÞ aðkÞ12 ðsÞ
aðkÞ21 ðsÞ aðkÞ22 ðsÞ

 !
�uk � uk

�ukþ1 � uk

� �
:¼ AkðsÞ

�uk � uk

�ukþ1 � uk

� �
: ð3:8Þ
The notation ðsÞ indicates that the corresponding variable is a function of s. In the following discussion, we shall drop ðsÞ for
simplicity whenever there is no ambiguity. Here we point out that the fluxes in (3.8) are just intermediate variables, which
may be different from the one given in (2.13) and will not be used in our nine-point scheme. The problem of constructing the
cell corner matrix Ak will be discussed in the subsequent subsection. Since the normal component of the flux is continuous
across the edge Q0Pkþ1, we have
4P

3P 1O2T

43

1T

2

4T

3T
1P

2O

4O3O

1

2P

0Q 0u

4P

3P 1u2u

43

1u

2

4u

3u
1P

2u

4u3u

1

2P

1
1f

2
1f

1
2f

2
2f
1
3f

2
3f 1

4f

2
4f

Fig. 2. The stencil and notations around a mesh vertex.
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aðkÞ21 ð�uk � ukÞ þ aðkÞ22 ð�ukþ1 � ukÞ þ aðkþ1Þ
11 ð�ukþ1 � ukþ1Þ þ aðkþ1Þ

12 ð�ukþ2 � ukþ1Þ ¼ 0;
which leads to the following linear system
MU ¼ NU; ð3:9Þ
where U ¼ ð�u1; �u2; �u3; �u4ÞT ;U ¼ ðu1;u2;u3;u4ÞT , and the nonzero entries of the 4 by 4 matricesM¼ ðmijÞ4�4 and N ¼ ðnijÞ4�4

are detailed below:
mk;k ¼ aðkÞ11 þ aðk�1Þ
22 ; mk;kþ1 ¼ aðkÞ12 ; mk;k�1 ¼ aðk�1Þ

21 ; ð3:10Þ
nk;k ¼ aðkÞ11 þ aðkÞ12 ; nkþ1;k ¼ aðkÞ21 þ aðkÞ22 ; k ¼ 1;2;3;4; ð3:11Þ
here the periodic numbering is employed such that m4;5 ¼ m4;1;m1;0 ¼ m1;4; a
ð0Þ
21 ¼ að4Þ21 , etc. By solving (3.9), we get
U ¼M�1NU :¼ BU; ð3:12Þ
where B ¼ ðbijÞ4�4. By (3.12), we are able to evaluate the additional cell edge unknowns by the cell-centered unknowns.
We now come back to the problem of evaluating vertex unknown u0. At the cell corner of Xk with respect to vertex Q 0, we

can now construct a linear interpolation based on the unknowns uk; �uk; �ukþ1. Noting that vertex Q 0 is located outside of tri-
angle OkTkþ1Tk (see Fig. 2), we get the following formula by extrapolation,
u0 ’ k1
kðQ 0Þuk þ k2

kðQ 0Þ�uk þ k3
kðQ 0Þ�ukþ1; ð3:13Þ
where ki
kði ¼ 1;2;3Þ are the area coordinates on triangle OkTkþ1Tk corresponding to Ok; Tk; Tkþ1, respectively. Substituting

(3.12) into (3.13), we get
u0 ’ k1
kðQ 0Þuk þ

X4

i¼1

½k2
kðQ 0Þbki þ k3

kðQ 0Þbkþ1;i�ui :¼
X4

i¼1

wðkÞi ui; ð3:14Þ
where
wðkÞi ¼ k1
kðQ 0Þdki þ k2

kðQ 0Þbki þ k3
kðQ0Þbkþ1;i; ð3:15Þ
and dki denotes the Kronecker delta. Finally, we choose our new weights as
wi ¼ wðk0Þ
i ; i ¼ 1;2;3;4; ð3:16Þ
where k0 is an integer such that
X4

i¼1

jwðk0Þ
i j ¼ min

16k64

X4

i¼1

jwðkÞi j: ð3:17Þ
In practical computation, k0 may not be unique. In this case, we adopt the following condition to ensure the uniqueness of k0,
X4

i¼1

wðk0Þ
i � 1

4

X4

j¼1

wðk0Þ
j

 !2

¼ min
16k64

X4

i¼1

wðkÞi �
1
4

X4

j¼1

wðkÞj

 !2

: ð3:18Þ
3.3. The construction of Ak under linearity preserving criterion

From the derivation in the above subsection, we see that the weights in (3.16) meet the linearity preserving criterion pro-
vided that Ak is constructed in a way that (3.8) holds for linear solutions. Under the linearity preserving criterion, Ak is un-
iquely determined. In fact, when the diffusion coefficient jðx; yÞ ¼ jðOkÞ is a constant and the solution is a linear function, we
find from (3.8) that
�jðOkÞ
v � R Q 0Pk

!
� �

�v � R Q 0Pkþ1

!
� �

0
BBB@

1
CCCA ’

aðkÞ11 aðkÞ12

aðkÞ21 aðkÞ22

0
@

1
A v � OkTk

!

v � OkTkþ1

!

0
@

1
A; ð3:19Þ
where v is an arbitrary constant vector and R denotes an operator on vectors which rotates a vector clockwise to its normal
direction. Solving (3.19) and through a straightforward calculation, we get
aðkÞij ¼
ð�1ÞiþjjðOkÞ

2SDOkTkþ1Tk

Q0Pkþi�1

!
�OkTk�jþ2

!
; i; j ¼ 1;2; ð3:20Þ
where
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SDQ0Tkþ1Tk
¼

ADQ0Tkþ1Tk
; Q 0; Tkþ1; Tk are ordered anticlockwisely;

�ADQ0Tkþ1Tk
; Q 0; Tkþ1; Tk are ordered clockwisely;

(
ð3:21Þ
and ADQ0Tkþ1Tk
is the area of triangle Q0Tkþ1Tk.

3.4. Implementation procedure

In order to facilitate coding, we give a sketch about the implementation of the linearity preserving nine-point scheme,
which consists of two main steps:

� Step 1. Compute the weights for each interior vertex unknown.
(i) Compute the corner matrix Ak by (3.20).
(ii) Compute the 4 by 4 matrices M;N and B defined in (3.9) and (3.12), respectively.
(iii) Compute wðkÞi ðk ¼ 1;2;3;4Þ by (3.15).
(iv) Use (3.17) and (3.18) to determine k0 and then get the weights by (3.16).

� Step 2. Compute the flux with respect to each cell edge by (2.13).
4. The relations with some existing schemes

We note that the corner matrix Ak plays an important role in the evaluation of the vertex unknowns in our linearity pre-
serving nine-point scheme (LPNPS). We also observe that this same corner matrix or its variations is used in the derivation of
some well-known cell-centered schemes, such as the cell-centered schemes in [6], the MPFA scheme in [1,19]. So it is inter-
esting to describe the relations between LPNPS and some other existing schemes.

First, consider a special case where s ¼ 1. In this case, Tk and Tkþ1 coincide with Q 0, and the two equations given in (3.8)
reduce to one equation, which is the counterpart of formula (2.27) in [28] under linearity preserving criterion. The authors in
[28] use their (2.27) and its counterparts with respect to the rest corners to obtain certain weights for (3.1).

Secondly, we can see from (3.20) that Ak is generally asymmetric. A symmetric Ak can be found in the case where the
mesh consists of uniform parallelograms and s ¼ 0:5, which is exact the one presented in formula (29) of [6] and obtained
by the support operator method. However, the resulting scheme no longer satisfies the linearity preserving criterion and
faces a loss of accuracy on highly distorted quadrilateral meshes.

Now, some interesting and natural questions or ideas arise. What happens if the corner matrix in formula (29) of [6] is
replaced by (3.8) with Ak given by (3.20)? Why not use (3.8) directly, instead of (2.13), to compute the normal flux in our
scheme? Both ideas lead us to a cell-centered scheme which can be viewed as certain generalized physical space derived
MPFA scheme (GMPFA scheme for short). Here, the word ’generalized’ means that, the continuity point Tk can be any interior
point on the whole edge Q0Pk.

The implementation of the GMPFA scheme is almost the same as that of a traditional MPFA O-method in [1] except that here
the continuity point can be any interior point on the whole cell edge. We observe that the accumulation of the cell edge fluxes is
one of the important issues for an MPFA type method. Since each edge has two vertices, the correspondent cell edge flux is com-
puted twice. In order to get a unique method, we must bear in mind that it is the half cell edge fluxes that are computed with
respect to each vertex, and by accumulating the two half cell edge fluxes we get the whole flux across each cell edge.

Many authors [4,12,24,25] investigated their MPFA type schemes with a varying s which is located mainly in [0.5,1). For
example, a finite volume method was studied in [12] with a parameter p belonging to ð0;0:5� while the authors in [24] de-
rived the flux expressions for the general OðgÞ-method in the case of homogeneous medium, uniform parallelogram grid and
g 2 ½0;1Þ. The relations p ¼ 1� s and g ¼ 2s� 1 can be easily established by recalling the definitions of s; p and g. In the
GMPFA scheme, s belongs to (0,1). Moreover, in the derivation of a MPFA scheme, a dual mesh consisting of dual cells or
interaction regions is usually necessary [1], while in the GMPFA scheme, the dual mesh is not needed at all. When deriving
the cell edge fluxes with respect to a mesh vertex Q 0, what we need is only the concept of cell corners, defined by \Q0PkPkþ1.
Another purpose of the introduction of a dynamic continuity point on the whole cell edge is to facilitate the analysis of the
solvability of the local linear systems.

5. The solvability of the local linear systems

It is easy to see that both the construction of linearity preserving scheme in Section 2 and that of the GMPFA scheme de-
pend upon the solvability of the local linear system (3.9), from which we can get an expression of U. An alternative approach
to obtain U is to invert (3.8) and use the continuity of edge normal flux fk :¼ f 2

k�1 ¼ �f 1
k ,
�uk � uk

�ukþ1 � uk

� �
¼

�aðkÞ11 ðsÞ �aðkÞ12 ðsÞ
�aðkÞ21 ðsÞ �aðkÞ22 ðsÞ

 !
jQ0Pkjf 1

k

jQ 0Pkþ1jf 2
k

 !
:¼ AkðsÞ

�jQ 0Pkjfk

jQ 0Pkþ1jfkþ1

� �
: ð5:1Þ
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Obviously, Ak ¼ A�1
k if Ak is invertible. Eliminating the edge unknowns �ukþ1, we have
MF ¼ NU; ð5:2Þ
where F ¼ ðjQ 0P1jf1; jQ 0P2jf2; jQ0P3jf3; jQ0P4jf4ÞT ;U ¼ ðu1;u2;u3;u4ÞT , and the nonzero entries of the 4 by 4 matrices
M¼ ð �mi;jÞ4�4 and N ¼ ð�nijÞ4�4 are as follows:
�mk;k ¼ �aðkÞ11 þ �aðk�1Þ
22 ; �mk;kþ1 ¼ ��aðkÞ12 ; �mk;k�1 ¼ ��aðk�1Þ

21 ;

�nk;k ¼ 1; �nkþ1;k ¼ �1; k ¼ 1;2;3;4;
ð5:3Þ
here we have used once again the periodic numbering technique. Solving (5.2), we get
F ¼M�1NU; ð5:4Þ
which expresses the flux vector F in term of the cell-centered unknown vector U. Substituting (5.4) into (5.1), one gets an-
other expression for U.

Obviously, the invertibility of matrices M and M is necessary to assure the robustness of our schemes. Besides, since
these two matrices, with certain special s, are also used in some MPFA type schemes and LFMFD type schemes [21], the dis-
cussion in this section also contributes to these existing schemes.

IfM is constructed in a way that the corner matrix Ak is given in [6], then the invertibility ofM is straightforward since
Ak is symmetric positive definite. As mentioned before, the use of this type of Ak will lead to a loss of accuracy in our
schemes, so we do not care about this special case. The authors in [19] obtained the solvability of the local linear system
under the condition that
�ðAk þAT
kÞ with s ¼ 1

2
is positive definite; ð5:5Þ
see (27) and Lemma A.1 in [19]. As mentioned by some authors, (5.5) is easy to be spoiled and not satisfied by many highly
distorted meshes [18]. Here we adopt, throughout this section, a relatively weaker assumption on the mesh, i.e.,

(A) All cells in the structured quadrilateral mesh are strictly convex, i.e., each interior angle of the cells in the mesh is less
than p.

For simplicity, we go back to Fig. 2 and use the notations therein for exposition. Still the periodic numbering technique
and the concept of algebraic area defined in (3.21) are employed. First, by (3.7), we find that
2SDOkTkþ1Tk
¼ sOkQ 0

!
þð1� sÞOkP

!
kþ1

� �
� sR OkQ 0

!
� �

þ ð1� sÞR OkPk

!
� �� �

¼ 2ð1� sÞðsSDQ0PkPkþ1
þ SDOkPkþ1Pk

Þ; ð5:6Þ
where we have used
SDOkQ0Pk
þ SDOkPkþ1Q0 � SDOkPkþ1Pk

¼ SDQ0PkPkþ1
:

Since the cell is a strictly convex one, we can define
sH

k ¼ �
SDOkPkþ1Pk

SDQ0PkPkþ1

: ð5:7Þ
It follows from (5.6) that
SDOkTkþ1Tk
¼ SDQ0PkPkþ1

ð1� sÞðs� sH

k Þ;
by which we can rewritten the entries of Ak, given by (3.20), in the form below
aðkÞij ¼
aðkÞij ðsÞ

ðs� 1Þðs� sH

k Þ
; i; j ¼ 1;2; ð5:8Þ
where
aðkÞij ðsÞ ¼
ð�1Þiþj�1jðOkÞ

2SDQ0PkPkþ1

Q0P
!

kþi�1 � OkT
!

k�jþ2 ð5:9Þ
is a linear function of s. Now we deduce from (3.10) and (5.8) that
DetM¼ DetM1ðsÞ
ðs� 1Þ4

Q4
k¼1ðs� sH

k Þ
2 ; ð5:10Þ
where
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M1ðsÞ ¼

b1ðsÞ að1Þ12 ðsÞðs� sH

4 Þ 0 að4Þ21 ðsÞðs� sH

1 Þ
að1Þ21 ðsÞðs� sH

2 Þ b2ðsÞ að2Þ12 ðsÞðs� sH

1 Þ 0

0 að2Þ21 ðsÞðs� sH

3 Þ b3ðsÞ að3Þ12 ðsÞðs� sH

2 Þ
að4Þ12 ðsÞðs� sH

3 Þ 0 að3Þ21 ðsÞðs� sH

4 Þ b4ðsÞ

0
BBBBB@

1
CCCCCA; ð5:11Þ
and
bkðsÞ ¼ aðkÞ11 ðsÞðs� sH

k�1Þ þ aðk�1Þ
22 ðsÞðs� sH

k Þ; k ¼ 1;2;3;4:
The result below follows immediately.

Lemma 5.1. Let M1ðsÞ be defined by (5.11) and (5.9), then

(1) DetM1ðsÞ is a polynomial of s with a degree not greater than 8;
(2) M is invertible if and only if s is not a root of the following polynomial of degree not greater than 13,
F 13ðsÞ ¼ DetM1ðsÞðs� 1Þ
Y4

k¼1

ðs� sH

k Þ:
By the above lemma, the distribution of the roots of F 13ðsÞ is very important for the choice of s in our schemes. To this
end, we first determine the location of sH

k . If the algebraic area SDOkPkþ1Pk
is positive and by (5.7), sH

k is negative. On the con-
trary, if SDOkPkþ1Pk

is non-positive and still by (5.7),
0 6 sH

k ¼ �
SDOkPkþ1Pk

SDQ0PkPkþ1

¼
SDOkPkPkþ1

SDQ0PkPkþ1

<
1
2
:

Summarizing the above discussion, we arrive at
sH

k <
1
2
; k ¼ 1;2;3;4: ð5:12Þ
It is easy to see that the case where s ¼ 1 corresponds to Tk ¼ Tkþ1 ¼ Q0. We can also understand the root sH

k through a
geometry approach. When s ¼ sH

k ; Tk and Tkþ1 are collinear with the cell center Ok, see Fig. 3. The distribution of the known
roots of F 13ðsÞ and the usual choices of s are shown in Fig. 4.

Further investigation of the roots of F 13ðsÞ can be done by proving
DetM1ðsÞ ¼ F 3ðsÞðs� 1Þ
Y4

k¼1

ðs� sH

k Þ;
where F 3ðsÞ is a polynomial of s with a degree not greater than 3. Since this approach involves tedious details, here we turn
to another approach by investigating the invertibility of matrix M. Firstly, we have the result below.

Lemma 5.2. Assume that the parameter s 2 ð0;1Þ and s–sH

k ðk ¼ 1;2;3;4Þ, defined in (5.7). Then DetMðsÞ–0 implies
DetMðsÞ–0.
Fig. 3. Some notations.

Fig. 4. MPFA: Ref. [1]; Sheng and Yuan: Ref. [28].
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Proof. By (5.6) and (5.7), Ak and Ak are invertible when s 2 ð0;1Þ and s–sH

k ðk ¼ 1;2;3;4Þ. Now, given U ¼ 0, from (5.2), we
have F ¼ 0 by the assumption DetMðsÞ–0, which leads to U ¼ 0 by (3.8) or (5.1). On the other hand, the assumptions in this
lemma and (3.10) guarantee that the entries ofM are all finite. If DetMðsÞ ¼ 0, then we are able to get a nonzero vector U
when U ¼ 0, which is a contradiction and completes the proof. h

Lemma 5.3. Let MðsÞ be defined by (5.3) and (5.1). Then
DetMðsÞ ¼ ðs� 1ÞF 3ðsÞ; ð5:13Þ
where F 3ðsÞ is a polynomial of s with degree at most 3.

Proof. By comparing (5.1) with (3.8) where Ak was defined in (3.20), we find
�aðkÞij ðsÞ ¼
1

2SDQ0PkPkþ1
jðOkÞ

OkT
!

kþi�1 � Q 0P
!

kþ2�j; i; j ¼ 1;2; ð5:14Þ
which are linear functions of s due to the definition of Tk in (3.7). It follows that
�aðkÞ1j ðsÞ � �aðkÞ2j ðsÞ ¼
1

2SDQ0PkPkþ1
jðOkÞ

OkT
!

k � OkT
!

kþ1

� �
� Q 0P
!

kþ2�j ¼
ðs� 1ÞPkP

!
kþ1 � Q0P

!
kþ2�j

2SDQ0PkPkþ1
jðOkÞ

; j ¼ 1;2:
Then,
��aðkÞ12 ðsÞ þ �aðkÞ22 ðsÞ þ �aðkþ1Þ
11 ðsÞ � �aðkþ1Þ

21 ðsÞ ¼ ðs� 1Þrk;
where
rk ¼ �
PkP
!

kþ1 � Q0P
!

k

2SDQ0PkPkþ1
jðOkÞ

þ Pkþ1P
!

kþ2 � Q0P
!

kþ2

2SDQ0Pkþ1Pkþ2
jðOkþ1Þ

:

Summing the first three rows of MðsÞ to its last row and taking out the common factor s� 1, we reach
DetMðsÞ ¼ ðs� 1ÞDetM1ðsÞ
with M1ðsÞ given by
M1ðsÞ ¼

�að1Þ11 ðsÞ þ �að4Þ22 ðsÞ ��að1Þ12 ðsÞ 0 ��að4Þ21 ðsÞ
��að1Þ21 ðsÞ �að2Þ11 ðsÞ þ �að1Þ22 ðsÞ ��að2Þ12 ðsÞ 0

0 ��að2Þ21 ðsÞ �að3Þ11 ðsÞ þ �að2Þ22 ðsÞ ��að3Þ12 ðsÞ
r4 r1 r2 r3

0
BBBB@

1
CCCCA:
By noting the fact that all �aðkÞij ðsÞ are linear functions of s we get (5.13) and complete the proof. h

The following result is straightforward.

Lemma 5.4. Assume that the coefficient jðx; yÞ is a constant j0, then under the assumption (A), there holds the decomposition
�aðkÞij ðsÞ ¼
1
j0
ð��bðkÞij sþ �cðkÞij Þ; i; j ¼ 1;2; k ¼ 1;2;3;4; ð5:15Þ
where
�bðkÞij ¼
Q 0P
!

kþi�1 � Q 0P
!

kþ2�j

2SDQ0PkPkþ1

; �cðkÞij ¼
OkP
!

kþi�1 � Q 0P
!

kþ2�j

2SDQ0PkPkþ1

: ð5:16Þ
Moreover,
�bðkþ1Þ
11 þ �bðkÞ22
�bðkþ1Þ

12
�bðkÞ12

¼ jQ 0Pkþ2j
jQ0Pkj

sinðhk þ hkþ1Þ;
�bðkþ1Þ

11 þ �bðkÞ22
�bðkþ1Þ

21
�bðkÞ21

¼ jQ 0Pkj
jQ0Pkþ2j

sinðhk þ hkþ1Þ; ð5:17Þ
where hk ¼ \PkQ0Pkþ1.

Lemma 5.5. Under the same assumptions of Lemma 5.4, there exist two constants a and b, independent of s, such that
DetMðsÞ ¼ ðs� 1Þðasþ bÞ: ð5:18Þ
Proof. Set
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a1 ¼
�bð2Þ11 þ �bð1Þ22

�bð2Þ12

; b1 ¼ �
�bð1Þ12
�bð4Þ21

:

By (5.16) and (5.17), we find that
�a1
�bð3Þ21 þ b1ð�b

ð4Þ
11 þ �bð3Þ22 Þ ¼ 0; a1ð�bð3Þ11 þ �bð2Þ22 Þ � b1

�bð3Þ12 ¼ �bð2Þ21 ;
where we have used
h1 þ h2 þ h3 þ h4 ¼ 2p:
Multiplying respectively the last two columns of M with a1 and b1, adding the results to the second column and through
some straightforward calculations, we reach
DetM¼ 1
j0

�að1Þ11 þ �að4Þ22 ��cð1Þ12 � b1�cð4Þ21 0 ��að4Þ21

��að1Þ21
�cð2Þ11 þ �cð1Þ22 � a1�cð2Þ12 ��að2Þ12 0

0 ��cð2Þ21 þ a1ð�cð3Þ11 þ �cð2Þ22 Þ � b1�cð3Þ12
�að3Þ11 þ �að2Þ22 ��að3Þ12

��að4Þ12 �a1�cð3Þ21 þ b1ð�c
ð4Þ
11 þ �cð3Þ22 Þ ��að3Þ21

�að4Þ11 þ �að3Þ22

����������

����������
: ð5:19Þ
Now, set
a2 ¼ �
�bð1Þ21
�bð2Þ12

; b2 ¼
�bð1Þ11 þ �bð4Þ22

�bð4Þ21

:

Performing a derivation similar to that of (5.19), we conclude that
DetM¼ 1
j2

0

�cð1Þ11 þ �cð4Þ22 � b2�cð4Þ21 ��cð1Þ12 � b1�cð4Þ21 0 ��að4Þ21

��cð1Þ21 � a2�cð2Þ12
�cð2Þ11 þ �cð1Þ22 � a1�cð2Þ12 ��að2Þ12 0

a2ð�cð3Þ11 þ �cð2Þ22 Þ � b2�cð3Þ12 d1 �að3Þ11 þ �að2Þ22 ��að3Þ12

d2 �a1�cð3Þ21 þ b1ð�c
ð4Þ
11 þ �cð3Þ22 Þ ��að3Þ21

�að4Þ11 þ �að3Þ22

������������

������������
;

where
d1 ¼ ��cð2Þ21 þ a1 �cð3Þ11 þ �cð2Þ22

� 	
� b1�cð3Þ12 ; d2 ¼ ��cð4Þ12 � a2�cð3Þ21 þ b2ð�c

ð4Þ
11 þ �cð3Þ22 Þ:
Noting that a1;a2; b1; b2;
�bðkÞij and �cðkÞij are all constant, independent of s, and moreover, �aðkÞij has the decomposition (5.15), we

arrive at (5.18) by using Lemma 5.3 and choosing
a ¼ 1
j4

0

�cð1Þ11 þ �cð4Þ22 � b2�cð4Þ21 ��cð1Þ12 � b1�cð4Þ21 0 ��bð4Þ21

��cð1Þ21 � a2�cð2Þ12
�cð2Þ11 þ �cð1Þ22 � a1�cð2Þ12 ��bð2Þ12 0

a2ð�cð3Þ11 þ �cð2Þ22 Þ � b2�cð3Þ12 d1
�bð3Þ11 þ �bð2Þ22 ��bð3Þ12

d2 �a1�cð3Þ21 þ b1ð�c
ð4Þ
11 þ �cð3Þ22 Þ ��bð3Þ21

�bð4Þ11 þ �bð3Þ22

������������

������������
;

and
b ¼ � 1
j4

0

�cð1Þ11 þ �cð4Þ22 ��cð1Þ12 0 ��cð4Þ21

��cð1Þ21
�cð2Þ11 þ �cð1Þ22 ��cð2Þ12 0

0 ��cð2Þ21
�cð3Þ11 þ �cð2Þ22 ��cð3Þ12

��cð4Þ12 0 ��cð3Þ21
�cð4Þ11 þ �cð3Þ22

������������

������������
: �
The main results of this section are summarized in the following theorem.

Theorem 5.1. DetMðsÞ has at most three roots in (0, 1) and, DetMðsÞ has at most three roots that are different from
sH

k ðk ¼ 1;2;3;4Þ and belong to (0,1). Moreover, under the same assumptions of Lemma 5.4, DetMðsÞ has at most one zero in
(0,1).
Proof. The proof of the first part follows immediately from Lemma 5.3. For s 2 ð0;1Þ and s–sH

k ðk ¼ 1;2;3;4Þ;DetMðsÞ ¼ 0
implies DetMðsÞ ¼ 0 by Lemma 5.2. The last result follows directly from Lemma 5.5, which concludes the proof. h

Based on Theorem 5.1, we obtain a robust algorithm for the solution of linear system (3.9) or (5.2), which is necessary for
our new nine-point scheme and certain physical space derived MPFA schemes, such as the O-method in [1]. Specifically, we
first choose s ¼ 1=2. If M or M is singular, then we choose, arbitrarily, a different value in (0, 1), for example, s ¼ 3=4 or
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s ¼ 2=5. Theoretically speaking, the nonsingular value can be obtained by sampling at most eight (resp. four) times for linear
system (3.9) (resp. (5.2)).

6. Numerical examples

In this section, we present some numerical results to demonstrate the accuracy and the efficiency of the linearity preserv-
ing nine-point schemes. The notations of the schemes that are considered in this section are given in Table 1. We point out
once again that, the generalized MPFA scheme with s ¼ 1=2 is identical to the physical space derived MPFA O-method, orig-
inally suggested in [1] and analyzed in [18,19]. The later is derived from a hypotheses of linear variation in u and accordingly,
is also derived from the linearity preserving method.

Example 6.1. Solve the problem
Table 1
The not

Nota

NPS1
NPS2
LPNP
LPNP
LPNP
GMP
MPF
CCD
LSOM
�Du ¼ ð6þ 4x2 þ 16y2Þex2þ2y2
; in X ¼ ½0;1� � ½0;1� ð6:1Þ
with Dirichlet boundary condition uðx; yÞ ¼ �ex2þ2y2 on @X. The exact solution is uðx; yÞ ¼ �ex2þ2y2 .

The solution errors and edge normal flux errors are investigated in the discrete L2 norms, which are defined by [4]
EuðhÞ ¼
X

i

Siðuh;i � uiÞ2
 !1=2

;

EqðhÞ ¼
X

j

Q jðqh;j � qjÞ
2

,X
j

Q j

 !1=2

:

Here Si is the area of mesh cell i;Qj is the volume associated with edge j and equal to the sum of the area of the two cells
separated by the edge j. Further, q ¼ �jru � n is the edge normal flux density. Subscript h refers to the discrete solution.
The analytical solution ui is computed at the cell centers, whereas the analytical cell edge flux qj is evaluated by the midpoint
rule.

We first use the uniform trapezoidal mesh shown in Fig. 5 to find out the convergence rates of the above nine schemes.
The L2 errors of the solution u and edge normal flux are presented in Tables 2 and 3 respectively, where in the last columns,
the convergence rates of the solution and the flux are presented, which are obtained by a least square fit on the ones com-
puted on each two successive meshes by the following formula
log½Eaðh2Þ=Eaðh1Þ�
logðh2=h1Þ

; a ¼ u; q;
where h1;h2 denote the mesh sizes of the two successive meshes, and Eaðh1Þ; Eaðh2Þ the corresponding L2 errors of the solu-
tion or the flux. The results in Tables 2 and 3 show that the convergence rates of the four linearity preserving schemes
(LPNPS1, LPNPS2, LPNPS-SY and GMPFA) are all of the second order for the solution and approximately Oðh3=2Þ for the flux,
the same as those of MPFA, while NPS1 and NPS2 seem to have no convergence rate in this special case. CCDS has a conver-
gence rate of Oðh1=2Þ for the solution and even lower convergence rate for the flux. As for LSOM, it has a second order con-
vergence rate for the solution and first order convergence for the flux. Moreover, according to our experience, the
computational costs of the weights in LPNPS2 is approximately one third of that in LPNPS-SY, which implies that, by the
use of proper technique, it is possible for us to get much better results than those of the old nine-point schemes and at
the same time, to keep the extra computational costs down to a reasonable level with much enhanced robustness.

Now we begin to investigate the performance of our linearity preserving schemes on some highly skewed and highly dis-
torted meshes. We note that there exist in the literature several typical meshes such as the random mesh, the Shestakov
mesh, the Kershaw mesh [17] and so on. As is done by many authors, we shall use these meshes to test our schemes. The
description of the mesh and analysis of the corresponding numerical results (see Table 4) are given as follows:
ations for the schemes.

tion Description

The nine-point scheme in Section 2 with equal weights
The nine-point scheme in Section 2 with weights given by (3.4)

S1 The Linearity preserving scheme in Section 2 with weights given by (3.5)
S2 The Linearity preserving scheme in Section 2 with weights given by (3.16)
S-SY The Linearity preserving scheme in section 2 with weights given in [28]
FA The generalized MPFA scheme in Section 3 with s ¼ 2=5
A The MPFA scheme suggested in [1] and analyzed in [18,19]
S The cell-centered diffusion scheme in [6]

The local support operator scheme in [23]



Fig. 5. Trapezoidal mesh.

Table 2
Comparison of solution errors on the uniform trapezoidal mesh.

N 4 8 16 32 64 Ru

NPS1 5:14� 10�1 4:01� 10�1 3:84� 10�1 3:81� 10�1 3:80� 10�1 0.109

NPS2 4:31� 10�1 2:97� 10�1 2:82� 10�1 2:81� 10�1 2:81� 10�1 0.154

LPNPS1 3:11� 10�1 8:96� 10�2 2:43� 10�2 6:19� 10�3 1:54� 10�3 1.914

LPNPS2 3:11� 10�1 8:96� 10�2 2:43� 10�2 6:20� 10�3 1:55� 10�3 1.913

LPNPS-SY 3:11� 10�1 8:96� 10�2 2:43� 10�2 6:19� 10�3 1:54� 10�3 1.914

GMPFA 2:07� 10�1 8:18� 10�2 2:35� 10�2 6:16� 10�3 1:56� 10�3 1.762

MPFA 3:20� 10�1 1:05� 10�1 2:85� 10�2 7:33� 10�3 1:85� 10�3 1.859

CCDS 1:34� 10�1 1:38� 10�1 9:48� 10�2 5:40� 10�2 2:86� 10�2 0.556

LSOM 5:28� 10�1 1:43� 10�1 3:62� 10�2 9:06� 10�3 2:27� 10�3 1.966

Table 3
Comparison of the flux errors on the uniform trapezoidal mesh.

N 4 8 16 32 64 Rq

NPS1 4:66� 100 2:64� 100 2:51� 100 2:59� 100 2:62� 100 0.207

NPS2 4:54� 100 2:15� 100 1:80� 100 1:84� 100 1:87� 100 0.320

LPNPS1 4:49� 100 1:65� 100 5:33� 10�1 1:65� 10�1 5:11� 10�2 1.615

LPNPS2 4:49� 100 1:65� 100 5:33� 10�1 1:65� 10�1 5:12� 10�2 1.614

LPNPS-SY 4:49� 100 1:65� 100 5:33� 10�1 1:65� 10�1 5:11� 10�2 1.615

GMPFA 2:73� 100 9:15� 100 2:83� 10�1 8:86� 10�2 3:09� 10�2 1.617

MPFA 2:33� 100 7:40� 10�1 2:25� 10�1 7:17� 10�2 2:66� 10�2 1.613

CCDS 1:37� 100 9:95� 10�1 8:40� 10�1 6:41� 10�1 4:63� 10�1 0.390

LSOM 1:49� 100 6:91� 10�1 3:17� 10�1 1:36� 10�1 5:90� 10�2 1.166
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� The random mesh is obtained by randomly disturbing the interior mesh vertices of the uniform mesh, see Fig. 6. The con-
vergence rates of nearly all schemes drop a little, compared with those on the uniform trapezoidal mesh. Again, the four
linearity preserving schemes have almost the same convergence rates as those of MPFA.

� A typical Shestakov mesh is shown in Fig. 7. The numerical results relevant to a sequence of Shestakov meshes are pre-
sented in the forth and fifth rows of Table 4. The performance of the linearity preserving schemes on this type of mesh is
similar to that of MPFA.

� A Kershaw mesh is shown in Fig. 8. Structured quadrilateral mesh of this type, first proposed by Kershaw [17], is used by
many authors to test their methods. One can see that this kind of mesh has a large distortion in vertical direction. It is
interesting to note that, on this special type of distorted mesh, MPFA, GMPFA and CCDS perform much better than the rest
six schemes.

Now, we investigate the performance of our schemes in a more interesting case where the diffusion coefficient is discon-
tinuous. The following test problem is rebuilt from the last test example in [27].

Example 6.2. Solve the problem (2.1) with Dirichlet boundary condition (2.2) and X ¼ ½0;1� � ½0;1�. The diffusion coefficient
is discontinuous, i.e., jðx; yÞ ¼ 1 for 0 < x 6 0:5 and k for 0:5 < x < 1. A solution that has a discontinuous tangential flux at
the interface x ¼ 0:5 is



Table 4
Convergence rates for the solution and the flux on distorted meshes.

Scheme Random mesh Shestakov mesh Kershaw mesh

Ru Rq Ru Rq Ru Rq

NPS1 �0.060 0.109 0.558 0.118 0.662 0.457
NPS2 0.209 0.361 0.872 0.419 0.954 0.763
LPNPS1 1.621 1.512 2.397 1.730 1.530 1.484
LPNPS2 1.631 1.503 2.372 1.724 1.701 1.472
LPNPS-SY 1.600 1.505 2.387 1.731 1.473 1.560
GMPFA 1.782 1.431 2.484 1.799 1.970 1.897
MPFA 1.848 1.420 2.630 1.842 1.961 1.916
CCDS 0.613 0.503 0.872 0.659 1.916 1.886
LSOM 1.834 0.993 2.552 1.473 1.459 1.313

Fig. 6. Random mesh.

Fig. 7. Shestakov mesh.

Fig. 8. Kershaw mesh.
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Fig. 9. Modified Shestakov mesh.
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Fig. 10. Convergence behavior on the uniform trapezoidal mesh ðk ¼ 10�1Þ.

log(1/h)

lo
g(
E u
(h
))

0 2 4 6 8 10 12
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1 NPS1
NPS2
CCDS
LPNPS-SY
GMPFA
MPFA
LPNPS2
LSOM
LPNPS1

log(1/h)

lo
g(
E q
(h
))

3210
-3.5

-3

-2.5

-2

-1.5

-1 CCDS
LPNPS-SY
GMPFA
MPFA
LPNPS2
LSOM
LPNPS1

Fig. 11. Convergence behavior on the uniform trapezoidal mesh ðk ¼ 10�3Þ.

J. Wu et al. / Journal of Computational Physics 229 (2010) 3382–3401 3397



lo
g(
E u
(h
))

lo
g(
E u
(h
))

-

-

-

-

3398 J. Wu et al. / Journal of Computational Physics 229 (2010) 3382–3401
uðx; yÞ ¼
1þ xþ yþ ðx� 0:5Þ2exþy; 0 < x 6 0:5;
3k�1

2k þ x
kþ yþ ðx� 0:5Þ2exþy; 0:5 < x < 1:

(
ð6:2Þ
Obviously, this solution and its relevant normal flux at the interface are continuous. We first employ the uniform trap-
ezoidal mesh and examine different values of k. the convergence rates are graphically depicted in Figs. 10 and 11 as log-
log plots of the solution errors and flux errors versus the characteristic mesh size h. The actual convergence order is reflected
by the slopes of the experimental error curves. The second mesh we employ is the modified Shestakov mesh shown in Fig. 9,
where the material interface coincides with the mesh line. The convergence results are given in Figs. 12 and 13. We can see
that the linearity preserving schemes performs very well on the discontinuity cases and have a comparable convergence
rates with the famous MPFA and LSOM schemes. Besides, we can see from the Figs. 10–13 that the accuracy of LPNPS2 is
almost the same as that of LPNPS-SY. Here, the results for NPS1 and NPS2 are not drawn in Fig. 11(b) and Fig. 13(b) due
to large errors.
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Fig. 12. Convergence behavior on the modified Shestakov mesh ðk ¼ 10�1Þ.
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Contrast to the traditional MPFA schemes, the generalized MPFA scheme employs a dynamic continuity point with
s 2 ð0;1Þ. We observe that convergence rates have been tested numerically in [2,13] for s ¼ 0:5 and in [4] for a comparison
of s ¼ 0:5 with s ¼ 0:75. The authors of [25] present the convergence results for the MPFA type scheme with
s ¼ 0:5;0:75;0:8565; 0:95. However, the above investigations are confined to certain fixed continuity point with
s 2 ½0:5;1Þ due to the restriction of interaction region or dual cell. In the following two examples, we will study the numer-
ical behavior of the generalized MPFA scheme with s 2 ð0;1Þ.

Example 6.3. Solve the boundary value problem (6.1) with Neumann boundary condition on the top boundary and Dirichlet
boundary condition on the rest part of the boundary.

We investigate the accuracy for the 64� 64 Kershaw mesh, random mesh, trapezoidal mesh and Shestakov mesh,
respectively. Figs. 14 shows the solution error for different locations of the continuity point Tk, where the points between
s 2 ð0;0:15Þ are not drawn due to large errors. Fig. 15 describes the flux errors. We can see that the minimum discrete L2

error is reached around s ¼ 0:5.

Example 6.4. We solve the same problem in Example 6.2. The top boundary is acted as a Neumann boundary and the Dirich-
let boundary condition is imposed on the rest part of the boundary. Here we set k ¼ 10�3. This time three types of meshes,
τ

E u
(h
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0.011

trapezoidal mesh
Kershaw mesh
random mesh
Shestakov mesh
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i.e., the 64� 64 trapezoidal mesh, Kershaw mesh and the modified Shestakov mesh, are involved. The L2 errors for the solu-
tion and the flux are shown in Figs. 16 and 17, respectively. In this special case, desirable results can be expected around
s ¼ 0:4.
7. Conclusions

We have discussed the problem of applying the linearity preserving method to improve the accuracy of a cell-centered
nine-point scheme. Both the derivation of the nine-point scheme and the treatments of vertex unknowns are subjected to
the so-called linearity preserving criterion. By investigating the relations between this scheme and some existing schemes,
a generalized MPFA scheme, which is also a nine-point linearity preserving scheme, is suggested. Numerical results show
that our linearity preserving nine-point schemes have almost second order accuracy on most highly distorted quadrilateral
meshes.

In deriving the linearity preserving schemes, we employ an MPFA-type technique to introduce a continuity point on the
cell edge. Contrast to the traditional MPFA method, the continuity point here is a dynamic one on the whole cell edge with a
parameter s which may have different values at different interior mesh vertices and can even be different for the four edges
sharing the same mesh vertex. The introduction of the dynamic continuity point enables us to analyze the solvability of the
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local linear system and to locate some of the singular points, which is not a trivial problem since the linear system depends
not only on the local geometry of the mesh but also the diffusion coefficient. The discussion for the solvability of the local
linear system contributes not only to our algorithms but also to some physical space derived MPFA algorithms. The problems
of locating the rest three possible singular points and exploiting other advantages of the choice of dynamic continuity point
constitute the topics of some future works.
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